These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATF3 represses PDX-1 expression in pancreatic β-cells.
    Author: Jang MK, Park HJ, Jung MH.
    Journal: Biochem Biophys Res Commun; 2011 Aug 26; 412(2):385-90. PubMed ID: 21821004.
    Abstract:
    The downregulation of PDX-1 expression plays an important role in development of type 2 diabetes. However, the negative regulator of PDX-1 expression is not well known. In this study, we analyzed the mouse PDX-1 promoter to characterize the effects of ATF3 on PDX-1 expression in pancreatic β-cells. Both thapsigargin treatment, an inducer of ER stress, and ATF3 expression decreased PDX-1 expression in pancreatic β-cells, MIN6N8. Furthermore, they also repressed the activity of -4.5 Kb promoter of mouse PDX-1 gene. Transfection studies with 5' deleted-reporters showed that ATF3 repressed the activity of 0.9Kb PDX-1 promoter, whereas it did not affect the activity of 0.7 Kb PDX-1 promoter, suggesting that ATF3 responsive element is located between the -903 and -702. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds directly to the promoter region spanning from -759 to -738. Moreover, mutation of the putative ATF/CRE site between -752 and -745 abrogated ATF3-mediated transrepression of the PDX-1 promoter. PDX-1 was decreased in MIN6N8 cells treated with high glucose or high palmitate, whereas ATF3 was increased, indicating that ATF3 plays a role in hyperglycemia or hyperlipidemia-mediated downregulation of PDX-1 expression. Collectively, these results demonstrate that ATF3 represses PDX-1 expression via binding to an ATF3-responsive element in its promoter, which plays an important role in suppression of pancreatic β-cells function.
    [Abstract] [Full Text] [Related] [New Search]