These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analysis of the mechanism of inhibition of human matrix metalloproteinase 7 (MMP-7) activity by green tea catechins. Author: Miyake T, Yasukawa K, Inouye K. Journal: Biosci Biotechnol Biochem; 2011; 75(8):1564-9. PubMed ID: 21821933. Abstract: Green tea catechins inhibit human matrix metalloproteinase 7 (MMP-7) activity non-competitively, and the galloyl group is essential for potent inhibition (Oneda et al., J. Biochem., 133, 571-576 (2003)). In this study, we analyzed the mechanism of this inhibition. In the hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl]-L-Ala-L-Arg-NH(2), the inhibitory effects of (-)-epigallocatechin-3-gallate (EGCG), (-)-gallocatechin-3-gallate (GCG), (-)-epicatechin-3-gallate (ECG), and (-)-catechin-3-gallate (CG) increased with increasing pH levels from 7.0 to 8.5. The inhibitory effects of EGCG and GCG were more potent than those of ECG and CG, and increased with increasing CaCl(2) concentrations from 10 to 50 mM. The fluorescence of EGCG and GCG decreased with increasing CaCl(2) concentrations and with the addition of MMP-7, while those of ECG and CG did not. Our results suggest that these differences result from that in the B ring, EGCG and GCG have phenol hydroxyl groups at the 3', 4', and 5' positions, while ECG and CG have them at the 3' and 4' positions.[Abstract] [Full Text] [Related] [New Search]