These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aldosterone stimulates vacuolar H(+)-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway.
    Author: Winter C, Kampik NB, Vedovelli L, Rothenberger F, Paunescu TG, Stehberger PA, Brown D, John H, Wagner CA.
    Journal: Am J Physiol Cell Physiol; 2011 Nov; 301(5):C1251-61. PubMed ID: 21832245.
    Abstract:
    Urinary acidification in the collecting duct is mediated by the activity of H(+)-ATPases and is stimulated by various factors including angiotensin II and aldosterone. Classically, aldosterone effects are mediated via the mineralocorticoid receptor. Recently, we demonstrated a nongenomic stimulatory effect of aldosterone on H(+)-ATPase activity in acid-secretory intercalated cells of isolated mouse outer medullary collecting ducts (OMCD). Here we investigated the intracellular signaling cascade mediating this stimulatory effect. Aldosterone stimulated H(+)-ATPase activity in isolated mouse and human OMCDs. This effect was blocked by suramin, a general G protein inhibitor, and GP-2A, a specific G(αq) inhibitor, whereas pertussis toxin was without effect. Inhibition of phospholipase C with U-73122, chelation of intracellular Ca(2+) with BAPTA, and blockade of protein kinase C prevented the stimulation of H(+)-ATPases. Stimulation of PKC by DOG mimicked the effect of aldosterone on H(+)-ATPase activity. Similarly, aldosterone and DOG induced a rapid translocation of H(+)-ATPases to the luminal side of OMCD cells in vivo. In addition, PD098059, an inhibitor of ERK1/2 activation, blocked the aldosterone and DOG effects. Inhibition of PKA with H89 or KT2750 prevented and incubation with 8-bromoadenosine-cAMP mildly increased H(+)-ATPase activity. Thus, the nongenomic modulation of H(+)-ATPase activity in OMCD-intercalated cells by aldosterone involves several intracellular pathways and may be mediated by a G(αq) protein-coupled receptor and PKC. PKA and cAMP appear to have a modulatory effect. The rapid nongenomic action of aldosterone may participate in the regulation of H(+)-ATPase activity and contribute to final urinary acidification.
    [Abstract] [Full Text] [Related] [New Search]