These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-resolution retinal imaging with micro adaptive optics system. Author: Niu S, Shen J, Liang C, Zhang Y, Li B. Journal: Appl Opt; 2011 Aug 01; 50(22):4365-75. PubMed ID: 21833112. Abstract: Based on the dynamic characteristics of human eye aberration, a microadaptive optics retina imaging system set is established for real-time wavefront measurement and correction. This paper analyzes the working principles of a 127-unit Hartmann-Shack wavefront sensor and a 37-channel micromachine membrane deformable mirror adopted in the system. The proposed system achieves wavefront reconstruction through the adaptive centroid detection method and the mode reconstruction algorithm of Zernike polynomials, so that human eye aberration can be measured accurately. Meanwhile, according to the adaptive optics aberration correction control model, a closed-loop iterative aberration correction algorithm based on Smith control is presented to realize efficient and real-time correction of human eye aberration with different characteristics, and characteristics of the time domain of the system are also optimized. According to the experiment results tested on a USAF 1951 standard resolution target and a living human retina (subject ZHY), the resolution of the system can reach 3.6 LP/mm, and the human eye wavefront aberration of 0.728λ (λ=785 nm) can be corrected to 0.081λ in root mean square (RMS) so as to achieve the diffraction limit (Strehl ratio is 0.866), then high-resolution retina images are obtained.[Abstract] [Full Text] [Related] [New Search]