These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the pancreatic beta-cells. Author: Sandström PE, Sehlin J. Journal: Biochim Biophys Acta; 1990 Apr 13; 1023(2):191-6. PubMed ID: 2183878. Abstract: In order to investigate whether Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the beta-cells, we tested the interaction between the effects of Na+ deficiency, furosemide and D-glucose on 86Rb+ fluxes in beta-cell-rich mouse pancreatic islets. Removal of extracellular Na+ slightly reduced the ouabain-resistant 86Rb+ influx and the specific effect of 1 mM furosemide on this influx was significantly smaller in Na(+)-deficient medium. The capacity of 20 mM D-glucose to reduce the ouabain-resistant 86Rb+ influx was not changed by removal of extracellular Na+. The 86Rb+ efflux from preloaded islets was rapidly and reversibly reduced by Na+ deficiency. Furosemide (1 mM) reduced the 86Rb+ efflux and the effect of the combination of Na+ deficiency and 1 mM furosemide was not stronger than the effect of furosemide alone. 22Na+ efflux was reduced by both ouabain and furosemide and the effects appeared to be additive. The data suggest that Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the pancreatic beta-cells. This adds further support to the idea that beta-cells exhibit a Na+, K+, Cl- co-transport system. Since some of the furosemide effect on 86Rb+ efflux persisted in the Na(+)-deficient medium, it is likely that also loop diuretic-sensitive K+, Cl- co-transport exists in this cell type.[Abstract] [Full Text] [Related] [New Search]