These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recombinant tumor necrosis factor enhances the proliferative responsiveness of murine peripheral macrophages to macrophage colony-stimulating factor but inhibits their proliferative responsiveness to granulocyte-macrophage colony-stimulating factor.
    Author: Chen BD, Mueller M.
    Journal: Blood; 1990 Apr 15; 75(8):1627-32. PubMed ID: 2183886.
    Abstract:
    Tumor necrosis factor (TNF) is a protein produced by activated macrophages in response to endotoxin. The effect of recombinant murine TNF (rMuTNF) on the growth of murine tissue-derived macrophage colony-forming units (CFU-M) which are responsive to both macrophage and granulocyte-macrophage colony-stimulating factors (M-CSF and GM-CSF), was studied. TNF alone did not stimulate macrophage proliferation but did prolong their survival in vitro. The proliferative response of CFU-M to M-CSF, however, was greatly enhanced by the presence of TNF. The enhancement effect of TNF is dose-dependent, reaching a maximum at approximately 50 U/mL. In contrast, the proliferative responsiveness of CFU-M to GM-CSF was inhibited by the concurrent addition of rMuTNF. Both effects appear to be caused directly by rMuTNF, rather than by the secondary factor(s) produced by TNF-treated macrophages. TNF treatment also induced a transient downmodulation of M-CSF receptors in cultured macrophages and accelerated their uptake and use of exogenous M-CSF, which may account for, at least in part, the enhanced proliferative activity in response to M-CSF. Short-term treatment (24 hours) was not sufficient to induce either an enhancing or an inhibitory effect upon CFU-M. This study suggests an autoregulatory role for TNF in the production of mature tissue macrophages by selectively enhancing their proliferative response to lineage specific growth factor, M-CSF.
    [Abstract] [Full Text] [Related] [New Search]