These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Some pharmaceutical and inclusion properties of 2-hydroxybutyl-β-cyclodextrin derivative.
    Author: Ishiguro T, Morishita E, Iohara D, Hirayama F, Wada K, Motoyama K, Arima H, Uekama K.
    Journal: Int J Pharm; 2011 Oct 31; 419(1-2):161-9. PubMed ID: 21839823.
    Abstract:
    2-Hydroxybutyl-β-cyclodextrins (HB-β-CyDs) with different degrees of substitution (D.S.) were prepared and their physicochemical and biological properties and solubilizing abilities were studied and compared with those of 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD). The surface activity of HB-β-CyD was higher than that of HP-β-CyD (D.S. 5.6) and increased with its concentration and D.S. The moisture sorption of HB-β-CyD (D.S. 5.5) was less than that of HP-β-CyD (D.S. 5.6), because of the introduction of hydrophobic hydroxybutyl groups in a molecule. The hemolytic activity (rabbit erythrocytes) decreased in the order of 2,6-di-O-methyl-β-cyclodextrin (DM-β-CyD)>methyl-β-cyclodextrin (M-β-CyD)>HB-β-CyD (D.S. 5.5)>β-CyD>HP-β-CyD (D.S. 5.6). The hemolytic activity of HB-β-CyD increased with D.S. and HB-β-CyD induced echinocyte (or crenation), as well as DM-β-CyD does. It was suggested from the solubility study of membrane components that HB-β-CyD interacted predominantly with cholesterol in erythrocytes, resulting in the hemolysis. The inclusion ability of HB-β-CyD was higher than that of HP-β-CyD (D.S. 5.6), especially for poorly water-soluble drugs with long linear structures such as biphenylylacetic acid and flurbiprofen (FP). For example, HB-β-CyD formed the inclusion complex with FP in a molar ratio of 1:1, by including the biphenyl moiety in the host cavity. The dissolution rate of FP/HB-β-CyD (D.S. 5.5) complex was faster than that of HP-β-CyD (D.S. 5.6) complex. The results suggested that HB-β-CyDs have considerable pharmaceutical potential and can work as a fast-dissolving carrier for poorly water-soluble drugs.
    [Abstract] [Full Text] [Related] [New Search]