These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Homocysteine homeostasis in the rat is maintained by compensatory changes in cystathionine β-synthase, betaine-homocysteine methyltransferase, and phosphatidylethanolamine N-methyltransferase gene transcription occurring in response to maternal protein and folic acid intake during pregnancy and fat intake after weaning.
    Author: Chmurzynska A, Malinowska AM.
    Journal: Nutr Res; 2011 Jul; 31(7):572-8. PubMed ID: 21840474.
    Abstract:
    The reactions of the methionine/homocysteine pathway are mediated by several enzymes, including phosphatidylethanolamine N-methyltransferase, cystathionine β-synthase, and betaine-homocysteine methyltransferase. Homocysteine homeostasis is regulated by these enzymes. We hypothesized here that the protein and folic acid content in the maternal diet affects methionine/homocysteine metabolism in the progeny. To test this hypothesis, pregnant rats were fed a diet with normal protein and normal folic acid levels (a modified casein-based AIN-93G diet), a protein-restricted and normal folic acid diet, a protein-restricted and folic acid-supplemented diet, or a normal protein and folic acid-supplemented diet. The progeny were fed either the modified AIN-93G diet or a high-fat lard-based diet. Progeny were analyzed for expression of the phosphatidylethanolamine N-methyltransferase, cystathionine β-synthase, and betaine-homocysteine methyltransferase genes in the liver and for serum homocysteine concentration. Interactions between prenatal and postnatal nutrition were also determined. The progeny of the dams fed the diets supplemented with folic acid showed decreased expression of all 3 genes (P < .001). An interaction effect between the protein and folic acid content in the maternal diet contributed to this down-regulation (P < .001), and the postweaning diet modified these effects. Serum homocysteine concentrations were approximately 15% higher in the male rats (P < .01), but neither prenatal nutrition nor the postweaning diet affected it significantly. We conclude that maternal diet during gestation has an important effect on the transcription level of these 3 genes, but changes in gene expression were not associated with significant changes in progeny homocysteine concentrations.
    [Abstract] [Full Text] [Related] [New Search]