These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids.
    Author: Gao A, Lu N, Dai P, Li T, Pei H, Gao X, Gong Y, Wang Y, Fan C.
    Journal: Nano Lett; 2011 Sep 14; 11(9):3974-8. PubMed ID: 21848308.
    Abstract:
    We herein report the design of a novel semiconducting silicon nanowire field-effect transistor (SiNW-FET) biosensor array for ultrasensitive label-free and real-time detection of nucleic acids. Highly responsive SiNWs with narrow sizes and high surface-to-volume-ratios were "top-down" fabricated with a complementary metal oxide semiconductor compatible anisotropic self-stop etching technique. When SiNWs were covalently modified with DNA probes, the nanosensor showed highly sensitive concentration-dependent conductance change in response to specific target DNA sequences. This SiNW-FET nanosensor revealed ultrahigh sensitivity for rapid and reliable detection of 1 fM of target DNA and high specificity single-nucleotide polymorphism discrimination. As a proof-of-concept for multiplex detection with this small-size and mass producible sensor array, we demonstrated simultaneous selective detection of two pathogenic strain virus DNA sequences (H1N1 and H5N1) of avian influenza.
    [Abstract] [Full Text] [Related] [New Search]