These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A blue corrinoid from partial degradation of vitamin B12 in aqueous bicarbonate: spectra, structure, and interaction with proteins of B12 transport. Author: Fedosov SN, Ruetz M, Gruber K, Fedosova NU, Kräutler B. Journal: Biochemistry; 2011 Sep 20; 50(37):8090-101. PubMed ID: 21851077. Abstract: Cobalamin (Cbl) is a complex cofactor produced only by bacteria but used by all animals and humans. Cyanocobalamin (vitamin B(12), CNCbl) is one commonly isolated form of cobalamin. B(12) belongs to a large group of corrinoids, which are characterized by a distinct red color conferred by the system of conjugated double bonds of the corrin ring retaining a Co(III) ion. A unique blue Cbl derivative was produced by hydrolysis of CNCbl in a weakly alkaline aqueous solution of bicarbonate. This corrinoid was purified and isolated as dark blue crystals. Its spectroscopic analysis and X-ray crystallography revealed B-ring opening with formation of 7,8-seco-cyanocobalamin (7,8-sCNCbl). The unprecedented structural change was caused by cleavage of the peripheral C-C bond between saturated carbons 7 and 8 of the corrin macrocycle accompanied by formation of a C═C bond at C7 and a carbonyl group at C8. Additionally, the C-amide was hydrolyzed to a carboxylic acid. The extended conjugation of the π-system caused a considerable red shift of the absorbance spectrum. Formation and degradation of 7,8-sCNCbl were analyzed qualitatively. Its interaction with the proteins of mammalian Cbl transport revealed both a slow binding kinetics and a low overall affinity. The binding data were compared to those of other monocarboxylic derivatives and agreed with the earlier proposed scheme for two-step ligand recognition. The obtained results are consistent with the structural models of 7,8-sCNCbl and the transport proteins intrinsic factor and transcobalamin. Potential applications of the novel derivative for drug conjugation are discussed.[Abstract] [Full Text] [Related] [New Search]