These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pathway-dependent isotope fractionation during aerobic and anaerobic degradation of monochlorobenzene and 1,2,4-trichlorobenzene. Author: Liang X, Howlett MR, Nelson JL, Grant G, Dworatzek S, Lacrampe-Couloume G, Zinder SH, Edwards EA, Sherwood Lollar B. Journal: Environ Sci Technol; 2011 Oct 01; 45(19):8321-7. PubMed ID: 21851082. Abstract: Stable carbon isotope fractionation is a valuable tool for monitoring natural attenuation and to establish the fate of groundwater contaminants. In this study, we measured carbon isotope fractionation during aerobic and anaerobic degradation of two chlorinated benzenes: monochlorobenzene (MCB) and 1,2,4-trichlorobenzene (1,2,4-TCB). MCB isotope fractionation was measured in anaerobic methanogenic microcosms, while 1,2,4-TCB isotope experiments were carried out in both aerobic and anaerobic microcosms. Large isotope fractionation was observed in both the anaerobic microcosm experiments. Enrichment factors (ε) for anaerobic reductive dechlorination of MCB and 1,2,4-TCB were -5.0‰ ± 0.2‰ and -3.0‰ ± 0.4‰, respectively. In contrast, no significant isotope fractionation was found during aerobic microbial degradation of 1,2,4-TCB. The cleavage of a C-Cl σ bond occurs during anaerobic reductive dechlorination of MCB and 1,2,4-TCB, while no σ bond cleavage is involved during aerobic degradation via dioxygenase. The difference in isotope fractionation for aerobic versus anaerobic biodegradation of MCB and 1,2,4-TCB can be explained by the difference in the initial step of aerobic versus anaerobic biodegradation pathways.[Abstract] [Full Text] [Related] [New Search]