These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fas/FasL-dependent and -independent activation of caspase-8 in doxorubicin-treated human breast cancer MCF-7 cells: ADAM10 down-regulation activates Fas/FasL signaling pathway.
    Author: Liu WH, Chang LS.
    Journal: Int J Biochem Cell Biol; 2011 Dec; 43(12):1708-19. PubMed ID: 21854868.
    Abstract:
    The contribution of Fas-mediated death pathway to doxorubicin-induced death of MCF-7 cells is not unambiguously elucidated. Thus, this study was conducted to explore doxorubicin-induced Fas/FasL signaling pathway activation in MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Dox) cells. Doxorubicin-induced caspase-8 activation was found to be mediated through Akt/ERK inactivation and FasL-independent Fas pathway in MCF-7 cells, while caspase-8 activation in MCF-7/Dox cells depended exclusively on FasL-stimulated Fas pathway. Suppression of caspase-8 activation restored the viability of doxorubicin-treated MCF-7 cells and MCF-7/Dox cells. Contrary to FasL surface expression exclusively detected in MCF-7/Dox cells, intracellular FasL expression was noted with MCF-7 cells. Promotion of FasL translocation to the cell surface by lysophosphatidic acid evoked a FasL-activated Fas death pathway in MCF-7 cells. Doxorubixin-evoked β-TrCP up-regulation promoted Sp1 degradation, which subsequently suppressed ADAM10 expression in MCF-7 and MCF-7/Dox cells. Doxorubicin-induced down-regulation of ADAM10 reduced FasL shedding, leading to Fas pathway activation in MCF-7/Dox cells. Knock-down of ADAM10 induced death in MCF-7/Dox cells, but marginally reduced the viability of MCF-7 cells. Taken together, our data indicate that Akt/ERK-mediated caspase-8 activation and Fas/FasL-mediated caspase-8 activation mostly elucidate doxorubicin-induced death in MCF-7 cells and MCF-7/Dox cells, respectively. These observations suggest a promising therapeutic modality for overcoming doxorubicin-resistant breast cancer by targeting ADAM10 sheddase activity.
    [Abstract] [Full Text] [Related] [New Search]