These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of 232Th in seawater by ICP-MS after preconcentration and separation using a chelating resin. Author: Takata H, Zheng J, Tagami K, Aono T, Uchida S. Journal: Talanta; 2011 Sep 30; 85(4):1772-7. PubMed ID: 21872017. Abstract: This article describes an analytical method for the separation, preconcentration and determination of (232)Th in seawater samples at sub-ng/L levels using a NOBIAS CHELATE PA1 resin and a sector field (SF) inductively coupled plasma mass spectrometer (ICP-MS). The resin showed excellent adsorption of (232)Th at a low pH of 2.4 ± 0.4 in a relatively small volume (200 mL) of seawater. (232)Th adsorbed on the resin was easily eluted using 5 mL of 0.8M HNO(3). An enrichment factor of 40 was achieved for (232)Th analysis. Ethylenediamine-tetraacetic acid disodium salt dehydrate (EDTA) was used to investigate the effect of (232)Th-binding organic ligand on the retention of (232)Th on the chelating resin. Results obtained using acidified samples (pH of 2.4 ± 0.4) showed EDTA had no significant effect on (232)Th recovery, indicating that at this low pH, (232)Th was dissociated from the (232)Th-binding organic ligand and quantitatively retained on the NOBIAS CHELATE PA1 resin. The developed analytical method was characterized by a separation and preconcentration taking approximately 4h and a low detection limit of 0.0038 ng/L for (232)Th, and was successfully applied to the determination of (232)Th in seawater samples collected from coastal areas, Japan.[Abstract] [Full Text] [Related] [New Search]