These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wild-type MIC distributions and epidemiological cutoff values for amphotericin B and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document).
    Author: Espinel-Ingroff A, Cuenca-Estrella M, Fothergill A, Fuller J, Ghannoum M, Johnson E, Pelaez T, Pfaller MA, Turnidge J.
    Journal: Antimicrob Agents Chemother; 2011 Nov; 55(11):5150-4. PubMed ID: 21876047.
    Abstract:
    Although clinical breakpoints have not been established for mold testing, epidemiological cutoff values (ECVs) are available for Aspergillus spp. versus the triazoles and caspofungin. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no acquired resistance mechanisms) were defined in order to establish ECVs for six Aspergillus spp. and amphotericin B. Two sets (CLSI/EUCAST broth microdilution) of available MICs were evaluated: those for A. fumigatus (3,988/833), A. flavus (793/194), A. nidulans (184/69), A. niger (673/140), A. terreus (545/266), and A. versicolor (135/22). Three sets of data were analyzed: (i) CLSI data gathered in eight independent laboratories in Canada, Europe, and the United States; (ii) EUCAST data from a single laboratory; and (iii) the combined CLSI and EUCAST data. ECVs, expressed in μg/ml, that captured 95%, 97.5%, and 99% of the modeled wild-type population (CLSI and combined data) were as follows: for A. fumigatus, 2, 2, and 4; for A. flavus, 2, 4, and 4; for A. nidulans, 4, 4, and 4; for A. niger, 2, 2, and 2; for A. terreus, 4, 4, and 8; and for A. versicolor, 2, 2, and 2. Similar to the case for the triazoles and caspofungin, amphotericin B ECVs may aid in the detection of strains with acquired mechanisms of resistance to this agent.
    [Abstract] [Full Text] [Related] [New Search]