These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and evaluation of 1-(4-[¹⁸F]fluoroethyl)-7-(4'-methyl)curcumin with improved brain permeability for β-amyloid plaque imaging.
    Author: Lee I, Yang J, Lee JH, Choe YS.
    Journal: Bioorg Med Chem Lett; 2011 Oct 01; 21(19):5765-9. PubMed ID: 21885280.
    Abstract:
    Alzheimer's disease is characterized by the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. We previously developed [(18)F]fluoropropylcurcumin ([(18)F]FP-curcumin), which demonstrated excellent binding affinity (K(i)=0.07 nM) for Aβ(1-40) aggregates and good pharmacokinetics in normal mouse brains. However, its initial brain uptake was poor (0.52% ID/g at 2 min post-injection). Therefore, in the present study, fluorine-substituted 4,4'-bissubstituted or pegylated curcumin derivatives were synthesized and evaluated. Their binding affinities for Aβ(1-42) aggregates were measured and 1-(4-fluoroethyl)-7-(4'-methyl)curcumin (1) had the highest binding affinity (K(i)=2.12 nM). Fluorescence staining of Tg APP/PS-1 mouse brain sections demonstrated high and specific labeling of Aβ plaques by 1 in the cortex region, which was confirmed with thioflavin-S staining of the same spots in the adjacent brain sections. Radioligand [(18)F]1 was found to have an appropriate partition coefficient (logP(o/w)=2.40), and its tissue distribution in normal mice demonstrated improved brain permeability (1.44% ID/g at 2 min post-injection) compared to that of [(18)F]FP-curcumin by a factor of 2.8 and fast wash-out from mouse brains (0.45% ID/g at 30 min post-injection). These results suggest that [(18)F]1 may hold promise as a PET radioligand for Aβ plaque imaging.
    [Abstract] [Full Text] [Related] [New Search]