These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. Author: Muschielok A, Michaelis J. Journal: J Phys Chem B; 2011 Oct 20; 115(41):11927-37. PubMed ID: 21888382. Abstract: Single-molecule fluorescence resonance energy transfer (sm-FRET) has been recently applied to distance and position estimation in macromolecular complexes. Here, we generalize the previously published Nano-Positioning System (NPS), a probabilistic method to analyze data obtained in such experiments, which accounts for effects of restricted rotational freedom of fluorescent dyes, as well as for limited knowledge of the exact dye positions due to attachment via flexible linkers. In particular we show that global data analysis of complete FRET networks is beneficial and that the measurement of FRET anisotropies in addition to FRET efficiencies can be used to determine accurately both position and orientation of the dyes. This measurement scheme improves localization accuracy substantially, and we can show that the improvement is a consequence of the more precise information about the transition dipole moment orientation of the dyes obtained by FRET anisotropy measurements. We discuss also rigid body docking of different macromolecules by means of NPS, which can be used to study the structure of macromolecular complexes. Finally, we combine our approach with common FRET analysis methods to determine the number of states of a macromolecule.[Abstract] [Full Text] [Related] [New Search]