These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrogen bond dynamics in heavy water studied with quantum dynamical simulations.
    Author: Paesani F.
    Journal: Phys Chem Chem Phys; 2011 Nov 28; 13(44):19865-75. PubMed ID: 21892511.
    Abstract:
    The structure and dynamics of the hydrogen-bond network in heavy water (D(2)O) is studied as a function of the temperature using quantum dynamical simulations. Our approach combines an ab initio-based representation of the water interactions with an explicit quantum treatment of the molecular motion. A direct connection between the calculated linear and nonlinear vibrational spectra and the underlying molecular dynamics is made, which provides new insights into the rearrangement of the hydrogen-bond network in heavy water. A comparison with previous calculations on liquid H(2)O suggests that tunneling does not effectively contribute to the dynamics of the water hydrogen-bond network above the melting point. However, the effects of nuclear quantization are not negligible at all temperatures and become increasingly important near the melting point, which is in agreement with recent experimental analysis of the structural properties of liquid water as well as of the proton momentum distribution in supercooled water.
    [Abstract] [Full Text] [Related] [New Search]