These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation of TiO₂ nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells. Author: Roh DK, Patel R, Ahn SH, Kim DJ, Kim JH. Journal: Nanoscale; 2011 Oct 05; 3(10):4162-9. PubMed ID: 21894346. Abstract: Track-etched polycarbonate (PC) membranes were used as a soft template to synthesize mesoporous TiO(2) for use in dye-sensitized solar cells (DSSCs). The Ti precursor infiltrated into the cylindrical confined spaces of PC membranes. Upon calcination at 500 °C, TiO(2) nanowires (15TNW) were obtained from PC with a 15 nm pore diameter, whereas TiO(2) nanotubes (50TNT and 100TNT) were generated from PC with 50 and 100 nm diameter pores, respectively. TNW and TNT were used as photoelectrodes in DSSCs employing a polymer electrolyte. The ranking of the cell efficiencies of the 200 nm thick TiO(2) films was 50TNT (1.1%) > 15TNW (0.8%) ≅ 100TNT (0.7%), which was mostly attributed to different amounts of dye adsorption due to different surface areas. These TNW and TNT films were further coated with the graft copolymer-directed mesoporous TiO(2) and were used as interfacial layers between the FTO glass and the 4 μm thick nanocrystalline TiO(2) film. As a result, the order of energy conversion efficiency was 15TNW (5.0%) ≅ 50TNT (4.8%) > 100TNT (4.1%). The improved performance of 15TNW was due to a higher transmittance through the electrode and a longer electron lifetime for recombination. The DSSC performance was systematically investigated in terms of interfacial resistance and charge recombination using electrochemical impedance spectroscopy.[Abstract] [Full Text] [Related] [New Search]