These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Author: Liu L, Ivanov AV, Gable ME, Jolivel F, Morrill GA, Askari A. Journal: Biochemistry; 2011 Oct 11; 50(40):8664-73. PubMed ID: 21905705. Abstract: To evaluate previously proposed functions of renal caveolar Na(+)/K(+)-ATPase, we modified the standard procedures for the preparation of the purified membrane-bound kidney enzyme, separated the caveolar and noncaveolar pools, and compared their properties. While the subunits of Na(+)/K(+)-ATPase (α,β,γ) constituted most of the protein content of the noncaveolar pool, the caveolar pool also contained caveolins and major caveolar proteins annexin-2 tetramer and E-cadherin. Ouabain-sensitive Na(+)/K(+)-ATPase activities of the two pools had similar properties and equal molar activities, indicating that the caveolar enzyme retains its ion transport function and does not contain nonpumping enzyme. As minor constituents, both caveolar and noncaveolar pools also contained Src, EGFR, PI3K, and several other proteins known to be involved in stimulous-induced signaling by Na(+)/K(+)-ATPase, indicating that signaling function is not limited to the caveolar pool. Endogenous Src was active in both pools but was not further activated by ouabain, calling into question direct interaction of Src with native Na(+)/K(+)-ATPase. Chemical cross-linking, co-immunoprecipitation, and immunodetection studies showed that in the caveolar pool, caveolin-1 oligomers, annexin-2 tetramers, and oligomers of the α,β,γ-protomers of Na(+)/K(+)-ATPase form a large multiprotein complex. In conjunction with known roles of E-cadherin and the β-subunit of Na(+)/K(+)-ATPase in cell adhesion and noted intercellular β,β-contacts within the structure of Na(+)/K(+)-ATPase, our findings suggest that interacting caveolar Na(+)/K(+)-ATPases located at renal adherens junctions maintain contact of two adjacent cells, conduct essential ion pumping, and are capable of locus-specific signaling in junctional cells.[Abstract] [Full Text] [Related] [New Search]