These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors. Author: Eguílaz M, Villalonga R, Yáñez-Sedeño P, Pingarrón JM. Journal: Anal Chem; 2011 Oct 15; 83(20):7807-14. PubMed ID: 21905724. Abstract: The design of a novel biosensing electrode surface, combining the advantages of magnetic ferrite nanoparticles (MNPs) functionalized with glutaraldehyde (GA) and poly(diallyldimethylammonium chloride) (PDDA)-coated multiwalled carbon nanotubes (MWCNTs) as platforms for the construction of high-performance multienzyme biosensors, is reported in this work. Before the immobilization of enzymes, GA-MNP/PDDA/MWCNT composites were prepared by wrapping of carboxylated MWCNTs with positively charged PDDA and interaction with GA-functionalized MNPs. The nanoconjugates were characterized by scanning electron microscopy (SEM) and electrochemistry. The electrode platform was used to construct a bienzyme biosensor for the determination of cholesterol, which implied coimmobilization of cholesterol oxidase (ChOx) and peroxidase (HRP) and the use of hydroquinone as redox mediator. Optimization of all variables involved in the preparation and analytical performance of the bienzyme electrode was accomplished. At an applied potential of -0.05 V, a linear calibration graph for cholesterol was obtained in the 0.01-0.95 mM concentration range. The detection limit (0.85 μM), the apparent Michaelis-Menten constant (1.57 mM), the stability of the biosensor, and the calculated activation energy can be advantageously compared with the analytical characteristics of other CNT-based cholesterol biosensors reported in the literature. Analysis of human serum spiked with cholesterol at different concentration levels yielded recoveries between 100% and 103%[Abstract] [Full Text] [Related] [New Search]