These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N2O decomposition by mesoporous silica supported Rh catalysts.
    Author: Hussain M, Fino D, Russo N.
    Journal: J Hazard Mater; 2012 Apr 15; 211-212():255-65. PubMed ID: 21907485.
    Abstract:
    Nitrous oxide (N(2)O), a greenhouse gas produced by nitric acid and adipic acid plants, damages the ozone layer and causes many environmental problems. The potential of MCM-41, SBA-15-Conventional (SBA-15-C), SBA-15-Spherical (SBA-15-S) and KIT-6 supported Rh catalysts has been explored at specific conditions for N(2)O decomposition in order to investigate the characteristics of new catalyst supports (SBA-15-S, KIT-6) for this application. A Rh metal loading of 1 wt% was impregnated to synthesize mesoporous silica supported Rh catalysts. The catalysts were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), N(2) adsorption/desorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and CO-chemisorption techniques. Of all the catalysts, Rh/SBA-15-S not only showed the highest activity, but also the best strength against ageing impact, O(2) inhibiting effect and long-term stability. The higher metal dispersion due to the smaller Rh particle size and a greater formation of Rh(+1) than Rh(0) or Rh(+3) on SBA-15-S compared to the other supports, favoured a higher N(2)O decomposition. The larger pore size of SBA-15-S in Rh/SBA-15-S might favour a better Rh access, diffusion and dispersion and lead to higher activity. The higher long-term stability of Rh/SBA-15-S, with preserved support characteristics, than the other supports indicates its significance.
    [Abstract] [Full Text] [Related] [New Search]