These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and complexes of an N4 Schiff-base macrocycle derived from 2,2'-iminobisbenzaldehyde.
    Author: Sanyal R, Cameron SA, Brooker S.
    Journal: Dalton Trans; 2011 Dec 07; 40(45):12277-87. PubMed ID: 21909566.
    Abstract:
    An N(4) tetradentate [1 + 1] Schiff base metal free macrocycle HL was prepared, by 1 : 1 condensation of 2,2'-iminobisbenzaldehyde (1) and diethylenetriamine, and characterised. Seven mononuclear complexes, [Zn(II)L(py)](BF(4)) (2), [Cu(II)L](BF(4))]·H(2)O (3), [Ni(II)L](BF(4))·H(2)O (4), [Co(II)L](BF(4))]·H(2)O (5), Fe(III)L(BF(4))(2)·2H(2)O·MeCN (6), [Co(III)L(NCS)(2)]·0.3py (7) and [Fe(III)L(NCS)(2)] (8), of L(-) are reported. The Cu(II) and Ni(II) complexes were prepared by a template approach whereas the others were accessed by metallation of pre-formed HL. The X-ray crystal structure determinations show that [Cu(II)L](BF(4)) and [Ni(II)L](BF(4)) feature square planar N(4) coordinated Cu(II) and Ni(II) centres, respectively, whereas [Fe(III)L(NCS)(2)]·NO(2)Me features an octahedral N(6) coordinated Fe(III) centre (two NCS anions bound axially) and the Zn(II) complex, which crystallised as 2{[Zn(II)L(py)](BF(4))}·py, features square pyramidal Zn(II) ions (a pyridine molecule bound axially). In all cases the N(4) macrocycle is bound equatorially to the metal ion. Cyclic voltammograms of the soluble BF(4) complexes, 2-5, were carried out in MeCN vs. 0.01 mol L(-1) AgNO(3)/Ag and revealed multiple, mostly irreversible or quasi-reversible, redox processes. The Zn(II) complex 2 exhibited two irreversible oxidation processes and one irreversible reduction process, all of which are ligand-centered. The Ni(II) complex 4 showed a process with a weak return wave at E(m) = +0.57 V (ΔE = 0.05 V). Interestingly, after controlled potential coulometry experiments on 2, 3 and 4 (at +0.48, +0.61 and +0.71 V which transferred 1.2, 1.0 and 1.6 e(-) equiv. per complex, respectively), a new reversible or quasi-reversible process was obtained, with a lower potential than beforehand (E(m) (ΔE)/V = +0.16 (0.08), +0.31 (0.13) and +0.45 (0.11) respectively).
    [Abstract] [Full Text] [Related] [New Search]