These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Author: Tajima S, Ikeda Y, Sawada K, Yamano N, Horinouchi Y, Kihira Y, Ishizawa K, Izawa-Ishizawa Y, Kawazoe K, Tomita S, Minakuchi K, Tsuchiya K, Tamaki T. Journal: Am J Physiol Endocrinol Metab; 2012 Jan 01; 302(1):E77-86. PubMed ID: 21917632. Abstract: Iron is an essential trace metal for most organisms. However, excess iron causes oxidative stress through production of highly toxic hydroxyl radicals via the Fenton/Haber-Weiss reaction. Iron storage in the body is reported to be associated with fat accumulation and type 2 diabetes mellitus. We investigated the role of iron in adiposity by using KKAy mice and obese and diabetic model mice. Eight-week-old KKAy mice were divided into two groups and treated with deferoxamine (DFO), an iron chelator agent, or a vehicle for 2 wk. DFO treatment diminished fat iron concentration and serum ferritin levels in KKAy mice. Fat weight and adipocyte size were reduced significantly in DFO-treated mice compared with vehicle-treated mice. Macrophage infiltration into fat was also decreased in DFO-treated mice compared with vehicle-treated mice. Superoxide production and NADPH oxidase activity in fat, as well as urinary 8-hydroxy-2'-deoxyguanosine excretion, were decreased in KKAy mice after DFO treatment while p22(phox) expression in adipose tissue was diminished in such mice. Ferritin expression in the fat of DFO-treated KKAy mice was decreased. In addition, F4/80-positive cells also presented through both p22(phox) and ferritin expression. The mRNA expression levels of inflammatory cytokines were also reduced in fat tissue of DFO-treated mice. These findings suggest that reduction of iron levels ameliorates adipocyte hypertrophy via suppression of oxidative stress, inflammatory cytokines, and macrophage infiltration, thereby breaking a vicious cycle in obesity.[Abstract] [Full Text] [Related] [New Search]