These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Separation and preconcentration of Cd(II), Cu(II), Ni(II), and Pb(II) in water and food samples using Amberlite XAD-2 functionalized with 3-(2-nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione and determination by inductively coupled plasma-atomic emission spectrometry. Author: Kumar BN, Ramana DK, Harinath Y, Seshaiah K, Wang MC. Journal: J Agric Food Chem; 2011 Oct 26; 59(20):11352-8. PubMed ID: 21919486. Abstract: A separation and preconcentration procedure was developed for the determination of trace amounts of Cd(II), Cu(II), Ni(II), and Pb(II) in water and food samples using Amberlite XAD-2 fuctionalized with a new chelating ligand, 3-(2-nitrophenyl)-1H-1,2,4-triazole-5(4H)-thione (Amberlite XAD-2-NPTT). The chelating resin was characterized by Fourier transform infrared spectroscopy (FT-IR) and used as a solid sorbent for enrichment of analytes from samples. The sorbed elements were subsequently eluted with 10 mL of 1.0 M HNO(3), and the eluates were analyzed by inductively coupled plasma-atomic emission spectrometry. The influences of the analytical parameters including pH, amount of adsorbent, eluent type and volume, flow rate of the sample solution, volume of the sample solution, and effect of matrix on the preconcentration of metal ions have been studied. The optimum pH for the sorption of four metal ions was about 6.0. The limits of detection were found to be 0.22, 0.18, 0.20, and 0.16 μg L(-1) for Cd(II), Cu(II), Ni(II), and Pb(II), respectively, with a preconcentration factor 60. The proposed method was applied successfully for the determination of metal ions in water and food samples.[Abstract] [Full Text] [Related] [New Search]