These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The nature of unsupported uranium-ruthenium bonds: a combined experimental and theoretical study. Author: Gardner BM, Patel D, Cornish AD, McMaster J, Lewis W, Blake AJ, Liddle ST. Journal: Chemistry; 2011 Sep 26; 17(40):11266-73. PubMed ID: 21922559. Abstract: Four new uranium-ruthenium complexes, [(Tren(TMS))URu(η(5)-C(5)H(5))(CO)(2)] (9), [(Tren(DMSB))URu(η(5)-C(5)H(5))(CO)(2)] (10), [(Ts(Tolyl))(THF)URu(η(5)-C(5)H(5))(CO)(2)] (11), and [(Ts(Xylyl))(THF)URu(η(5)-C(5)H(5))(CO)(2)] (12) [Tren(TMS)=N(CH(2)CH(2)NSiMe(3))(3); Tren(DMSB)=N(CH(2)CH(2)NSiMe(2)tBu)(3)]; Ts(Tolyl)=HC(SiMe(2)NC(6)H(4)-4-Me)(3); Ts(Xylyl)=HC(SiMe(2)NC(6)H(3)-3,5-Me(2))(3)], were prepared by a salt-elimination strategy. Structural, spectroscopic, and computational analyses of 9-12 shows: i) the formation of unsupported uranium-ruthenium bonds with no isocarbonyl linkages in the solid state; ii) ruthenium-carbonyl backbonding in the [Ru(η(5)-C(5)H(5))(CO)(2)](-) ions that is tempered by polarization of charge within the ruthenium fragments towards uranium; iii) closed-shell uranium-ruthenium interactions that can be classified as predominantly ionic with little covalent character. Comparison of the calculated U-Ru bond interaction energies (BIEs) of 9-12 with the BIE of [(η(5)-C(5)H(5))(3)URu(η(5)-C(5)H(5))(CO)(2)], for which an experimentally determined U-Ru bond disruption enthalpy (BDE) has been reported, suggests BDEs of approximately 150 kJ mol(-1) for 9-12.[Abstract] [Full Text] [Related] [New Search]