These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals. Author: Zhang W, Li Y, Zhang H, Zhou X, Zhong X. Journal: Inorg Chem; 2011 Oct 17; 50(20):10432-8. PubMed ID: 21928786. Abstract: Manganese-doped zinc sulfide quantum dots (Mn:ZnS d-dots) with high optical quality, pure dopant emission of 55-65% photoluminescence quantum yield, were synthesized in octadecene media with generic starting materials, namely, zinc (manganese) carboxylic acid salts, S powder, and dodecanethiol (DDT) based on a "nucleation doping" strategy. The optical properties and structure of the obtained Mn:ZnS d-dots have been characterized by UV-vis, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The resulting nearly monodisperse d-dots were found to be of spherical shape with a zinc-blende crystal structure. The influences of various experimental variables, including the reaction temperature for the MnS core nanocluster and ZnS host material, the amount of octadecene (ODE)-S, DDT, as well as Zn/Mn ratio have been systematically investigated. The use of DDT as capping ligand ensured the reproducible access to a stable small-sized MnS core. This paves the way for reproducibly obtaining highly luminescent d-dots. Programmed overcoating temperature for growth of ZnS shell was employed to realize balanced diffusion of the Mn ions in the d-dots.[Abstract] [Full Text] [Related] [New Search]