These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Author: Wang Y, Liu L, Li M, Xu S, Gao F. Journal: Biosens Bioelectron; 2011 Dec 15; 30(1):107-11. PubMed ID: 21959226. Abstract: Polydopamine (Pdop) has recently been shown to adsorb to a wide variety of surfaces and serves as an adhesion layer to immobilize biological molecules. In this work, the multifunctional carbon nanotube (CNT) composites were prepared though the oxidation of dopamine at room temperature and subsequent electroless silver deposition by mildly stirring. The stable immobilization and direct electron transfer of glucose oxidase were achieved on the composite film modified glassy carbon electrode. The resulting electrode gave a well-defined redox peaks with a formal potential of about -482 mV (vs. SCE) in pH 7.0 buffer. The electron transfer rate constant was estimated to be 3.6 s(-1), due to the combined contribution of Pdop, CNTs and Ag nanoparticles with the help of Nafion. Furthermore, the method for detecting of glucose was proposed based on the decrease of oxygen caused by the enzyme-catalyzed reaction between glucose oxidase (GOD) and glucose. The linear response to glucose ranging from 50.0 μM to 1.1 mM (R(2)=0.9958), with a calculated detection limit of 17.0 μM at a signal-to-noise ratio of 3. The low calculated apparent Michaelis-Menten constant (K(M)(app)) was 5.46 mM, implying the high enzymatic activity and affinity of immobilized GOD for glucose. It can reasonably be expected that this observation might hold true for other noble metal nanostructure-electroactive protein systems, providing a promising platform for the development of biosensors and biofuel cells.[Abstract] [Full Text] [Related] [New Search]