These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Liquid structure of and Li+ ion solvation in bis(trifluoromethanesulfonyl)amide based ionic liquids composed of 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium cations. Author: Umebayashi Y, Hamano H, Seki S, Minofar B, Fujii K, Hayamizu K, Tsuzuki S, Kameda Y, Kohara S, Watanabe M. Journal: J Phys Chem B; 2011 Oct 27; 115(42):12179-91. PubMed ID: 21961434. Abstract: Liquid structures of the bis(trifluoromethanesulfonyl)amide based ionic liquids composed of 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium ([C(2)mIm(+)][TFSA(-)] and [C(3)mPyrro(+)][TFSA(-)], respectively) and Li(+) ion solvation structure in their lithium salt solutions were studied by means of high-energy X-ray diffraction (HEXRD) technique with the aid of MD simulations. With regard to neat ionic liquids, a small but significant difference was found at around 3.5 Å in the intermolecular radial distribution functions G(inter)(r)s for these two ionic liquids; i.e., G(inter)(r) for [C(2)mIm(+)][TFSA(-)] was positioned at a slightly shorter region relative to that for [C(3)mPyrro(+)][TFSA(-)], which suggests that the nearest neighboring cation-anion interaction in the imidazolium ionic liquid is slightly greater than that in the other. With regard to Li(+) ion solvation structure, G(inter)(r)s for [C(2)mIm(+)][TFSA(-)] dissolving Li(+) ion exhibited additional small peak of about 1.9 Å attributable to the Li(+)-O (TFSA(-)) atom-atom correlation, though the corresponding peak was unclear in [C(3)mPyrro(+)][TFSA(-)] due to overlapping with the intramolecular atom-atom correlations in [C(3)mPyrro(+)]. In addition, the long-range density fluctuation observed in the neat ionic liquids diminished with the increase of Li(+) ion concentration for both ionic liquid solutions. These observations indicate that the large scale Li(+) ion solvated clusters are formed in the TFSA based ionic liquids, and well support the formation of [Li(TFSA)(2)](+) cluster clarified by previous Raman spectroscopic studies. MD simulations qualitatively agree with the experimental facts, by which the decrease in the long-range oscillation amplitude of r(2){G(r) - 1} for the Li(+) containing ionic liquids can be ascribed to the variation in the long-range anion-anion correlations caused by the formation of the Li(+) ion solvated clusters.[Abstract] [Full Text] [Related] [New Search]