These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Forecasting of daily air quality index in Delhi. Author: Kumar A, Goyal P. Journal: Sci Total Environ; 2011 Nov 15; 409(24):5517-23. PubMed ID: 21962560. Abstract: As the impact of air pollutants on human health through ambient air address much attention in recent years, the air quality forecasting in terms of air pollution parameters becomes an important topic in environmental science. The Air Quality Index (AQI) can be estimated through a formula, based on comprehensive assessment of concentration of air pollutants, which can be used by government agencies to characterize the status of air quality at a given location. The present study aims to develop forecasting model for predicting daily AQI, which can be used as a basis of decision making processes. Firstly, the AQI has been estimated through a method used by US Environmental Protection Agency (USEPA) for different criteria pollutants as Respirable Suspended Particulate Matter (RSPM), Sulfur dioxide (SO2), Nitrogen dioxide (NO2) and Suspended Particulate Matter (SPM). However, the sub-index and breakpoint concentrations in the formula are made according to Indian National Ambient Air Quality Standard. Secondly, the daily AQI for each season is forecasted through three statistical models namely time series auto regressive integrated moving average (ARIMA) (model 1), principal component regression (PCR) (model 2) and combination of both (model 3) in Delhi. The performance of all three models are evaluated with the help of observed concentrations of pollutants, which reflects that model 3 agrees well with observed values, as compared to the values of model 1 and model 2. The same is supported by the statistical parameters also. The significance of meteorological parameters of model 3 has been assessed through principal component analysis (PCA), which indicates that daily rainfall, station level pressure, daily mean temperature, wind direction index are maximum explained in summer, monsoon, post-monsoon and winter respectively. Further, the variation of AQI during the weekends (holidays) and weekdays are found negligible. Therefore all the days of week are accounted same in the models.[Abstract] [Full Text] [Related] [New Search]