These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous backscatter and attenuation estimation using a least squares method with constraints.
    Author: Nam K, Zagzebski JA, Hall TJ.
    Journal: Ultrasound Med Biol; 2011 Dec; 37(12):2096-104. PubMed ID: 21963038.
    Abstract:
    Backscatter and attenuation variations are essential contrast mechanisms in ultrasound B-mode imaging. Emerging quantitative ultrasound methods extract and display absolute values of these tissue properties. However, in clinical applications, backscatter and attenuation parameters sometimes are not easily measured because of tissues inhomogeneities above the region-of-interest (ROI). We describe a least squares method (LSM) that fits the echo signal power spectra from a ROI to a three-parameter tissue model that simultaneously yields estimates of attenuation losses and backscatter coefficients. To test the method, tissue-mimicking phantoms with backscatter and attenuation contrast as well as uniform phantoms were scanned with linear array transducers on a Siemens S2000. Attenuation and backscatter coefficients estimated by the LSM were compared with those derived using a reference phantom method (Yao et al. 1990). Results show that the LSM yields effective attenuation coefficients for uniform phantoms comparable to values derived using the reference phantom method. For layered phantoms exhibiting nonuniform backscatter, the LSM resulted in smaller attenuation estimation errors than the reference phantom method. Backscatter coefficients derived using the LSM were in excellent agreement with values obtained from laboratory measurements on test samples and with theory. The LSM is more immune to depth-dependent backscatter changes than commonly used reference phantom methods.
    [Abstract] [Full Text] [Related] [New Search]