These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of abnormal synaptic transmission in hippocampal CA3 neurons of spontaneously epileptic rats (SERs) by levetiracetam.
    Author: Hanaya R, Kiura Y, Serikawa T, Kurisu K, Arita K, Sasa M.
    Journal: Brain Res Bull; 2011 Nov 25; 86(5-6):334-9. PubMed ID: 21968023.
    Abstract:
    Levetiracetam (LEV) inhibits partial refractory epilepsy in human, and both convulsive and absence-like seizures in the spontaneously epileptic rat (SER). Two-thirds of hippocampal CA3 neurons in SER show a long-lasting depolarization shift, with accompanying repetitive firing upon mossy fiber stimulation. This abnormal excitability is probably attributable to abnormalities in the L-type Ca(2+) channels. We performed electrophysiological studies to elucidate the mechanism underlying the antiepileptic effects of LEV via intracellular recording from the hippocampal CA3 neurons in slice preparations of SER and non-epileptic Wistar rats. LEV (100 μM) inhibited the depolarization shift with repetitive firing by mossy fiber stimulation (MFS), without affecting the first spike in SER CA3 neurons. At a higher dose (1mM), LEV suppressed the first spike in all SER neurons (including the CA3 neurons which showed only a single action potential by MFS), while the single action potential of Wistar rat CA3 neurons remained unaffected. SER CA3 neurons with MFS-induced abnormal firing exhibited a higher number of repetitive spikes when a depolarization pulse was applied in the SER CA3 neurons. LEV (100 μM, 1mM) reduced the repetitive firing induced by a depolarization pulse applied without affecting Ca(2+) spike in SER neurons. LEV is known not to bind glutamate and gamma-aminobutyric acid (GABA) receptors. These findings suggest that the therapeutic concentration of LEV inhibits abnormal firing of the CA3 neurons by modulating abnormal synaptic transmission and abnormal Na(+) channels in SER.
    [Abstract] [Full Text] [Related] [New Search]