These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges. Author: Sun L, Wei P, Wei J, Sanvito S, Hou S. Journal: J Phys Condens Matter; 2011 Oct 26; 23(42):425301. PubMed ID: 21969127. Abstract: The energetic stability, electronic and magnetic properties of chiral graphene nanoribbons (GNRs) with hydrogen-terminated edges are investigated using density functional theory. Our calculations show that the percentage of carbon atoms at the zigzag sites (P(z)) is the key factor determining the electronic and magnetic properties of chiral GNRs. Within the local spin density approximation, chiral GNRs with P(z) ≥ 50% have a semiconducting antiferromagnetic ground state. Otherwise, chiral GNRs are spin degenerate semiconductors. Thus, the critical chiral angle for the occurrence of spin polarization is determined to be 13.9°. In contrast to the antiferromagnetic state that is independent of the width of GNRs investigated, size effects occur for the ferromagnetic metastable state. These findings are helpful for the design of GNR-based spintronic devices.[Abstract] [Full Text] [Related] [New Search]