These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco. Author: Kim YO, Patel DH, Lee DS, Song Y, Bae HJ. Journal: Biosci Biotechnol Biochem; 2011; 75(10):1912-20. PubMed ID: 21979068. Abstract: Experimental evidence in vivo as to the functional roles and binding properties to cadmium (Cd) of type-2 plants metallothionein (MT) has been limited thus far. We investigated the biological role of metallothionein from Colocasia esculenta (CeMT2b) in Escherichia coli and tobacco, and developed a new model for the relationship between Cd tolerance and Cd-binding ability. Heterologous expression of CeMT2b in Escherichia coli greatly enhanced Cd tolerance and accumulated Cd content as compared to control cells. The molecular weight of CeMT2b increased with Cd, and CeMT2b bound up to 5.96±1 molar ratio (Cd/protein). Under Cd stress, transgenic tobacco plants displayed much better seedling growth and high Cd accumulation than the wild type. The presence of an extra CXC motif in CeMT2b contributed to the enhanced Cd-tolerance. The present study provides the first insight into the ability of type-2 plant MT to bind physiological Cd.[Abstract] [Full Text] [Related] [New Search]