These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel vaccine delivery system: biodegradable nanoparticles in thermosensitive hydrogel. Author: Wu QJ, Zhu XC, Xiao X, Wang P, Xiong da K, Gong CY, Wang YS, Yang L, Wei YQ. Journal: Growth Factors; 2011 Dec; 29(6):290-7. PubMed ID: 21981422. Abstract: In this work, a novel vaccine delivery system, biodegradable nanoparticles (NPs) in thermosensitive hydrogel, was investigated. Human basic fibroblast growth factor (bFGF)-loaded NPs (bFGF-NPs) were prepared, and then bFGF-NPs were incorporated into thermosensitive hydrogel to form bFGF-NPs in a hydrogel composite (bFGF-NPs/hydrogel). bFGF-NPs/hydrogel was an injectable sol at ambient temperature, but was converted into a non-flowing gel at body temperature. The in vitro release profile showed that bFGF could be released from bFGF-NPs or bFGF-NPs/hydrogel at an extended period, but the release rate of bFGF-NPs/hydrogel was much lower. In vivo experiments suggested that immunogenicity of bFGF improved significantly after being incorporated into the NPs/hydrogel composite, and strong humoral immunity was maintained for longer than 12 weeks. Furthermore, an in vivo protective anti-tumor immunity assay indicated that immunization with bFGF-NPs/hydrogel could induce significant suppression of the growth and metastases of tumors. Thus, the NPs/hydrogel composite may have great potential application as a novel vaccine delivery system.[Abstract] [Full Text] [Related] [New Search]