These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Superoxide anion contributes to the induction of tumor necrosis factor alpha (TNFα) through activation of the MKK3/6-p38 MAPK cascade in rat microglia.
    Author: Yoshino Y, Yamamoto S, Kohsaka S, Oshiro S, Nakajima K.
    Journal: Brain Res; 2011 Nov 08; 1422():1-12. PubMed ID: 21981804.
    Abstract:
    Stimulation of rat microglia with lipopolysaccharide (LPS) in vitro induces production of the inflammatory/cytotoxic cytokine tumor necrosis factor alpha (TNFα) along with superoxide anion (O(2)(-)) and nitric oxide (NO). In this study, we investigated the role of O(2)(-) and NO in the induction of TNFα in microglia. The LPS-inducible TNFα was significantly suppressed by pretreatment with the O(2)(-) scavenger N-acetyl cysteine (NAC), but not by the NO scavenger 2-(4-Carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide, suggesting the close association of O(2)(-) with TNFα induction. NAC strongly depressed phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which is necessary for inducing TNFα in microglia. On the other hand, an O(2)(-) donor, 3-(4-Morpholinyl)sydnonimine (SIN-1), induced TNFα in microglia, and the effects of SIN-1 were completely abolished in the presence of superoxide dismutase. There is little likelihood that the NO produced in SIN-1 degradation induces TNFα in microglia, because TNFα was not induced in microglia exposed to the NO-donor S-nitroso-N-acetyl-dl-penicillamine. Moreover, the addition of SIN-1 to microglia resulted in activation of p38 MAPK and its upstream kinase MKK3/6. Taken together, these results showed that O(2)(-) is an important signaling molecule for activating the MKK3/6-p38 cascade, which is requisite for inducing TNFα in microglia.
    [Abstract] [Full Text] [Related] [New Search]