These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic mechanism of dihydropyrimidine dehydrogenase from pig liver. Author: Podschun B, Cook PF, Schnackerz KD. Journal: J Biol Chem; 1990 Aug 05; 265(22):12966-72. PubMed ID: 2198281. Abstract: Data on initial velocity and isotope exchange at equilibrium suggest a nonclassical ping-pong mechanism for the dihydropyrimidine dehydrogenase from pig liver. Initial velocity patterns in the absence of inhibitors appeared parallel at low reactant concentration, with substrate inhibition by NADPH that is competitive with uracil and with substrate inhibition by uracil that is uncompetitive with NADPH. The Km values for both uracil (1 microM) and NADPH (7 microM) are low. As a result, it was difficult to determine whether the initial velocity pattern in the absence of added inhibitors was parallel. Thus, the pattern was redetermined in the presence of the dead-end inhibitor 2,6-dihydroxypyridine, which binds to both sites. This treatment effectively eliminates the inhibition by both substrates and increases their Km values, giving a strictly parallel pattern. Product and dead-end inhibition patterns are consistent with a mechanism in which NADPH reduces the enzyme at site 1 and electrons are transferred to site 2 to reduce uracil to dihydrouracil. The predicted mechanism is corroborated by exchange between [14C] NADP and NADPH as well as [14C]thymine and dihydrothymine in the absence of the other substrate-product pair.[Abstract] [Full Text] [Related] [New Search]