These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural and functional studies of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase produced in Escherichia coli. Evidence for an acyl-enzyme intermediate. Author: Rudnick DA, McWherter CA, Adams SP, Ropson IJ, Duronio RJ, Gordon JI. Journal: J Biol Chem; 1990 Aug 05; 265(22):13370-8. PubMed ID: 2198291. Abstract: Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase has been efficiently expressed in Escherichia coli and subsequently purified to homogeneity using phosphocellulose chromatography. The interactions between apoenzyme and its acyl-CoA and peptide ligands were examined by an isoelectric focusing gel shift assay, circular dichroism, and fluorescence spectroscopy, and a continuous assay of enzyme activity which measures the release of CoA from acyl-CoA using the thiol-specific reagent 5-5'-dithiobis-2-nitrobenzoate. Addition of myristoyl-CoA (without a substrate peptide) results in the formation of a high affinity reaction intermediate which can be operationally defined by the appearance of a more acidic enzyme isoform and by quenching of the tryptophan emission with a maximal difference at 340 nm. Circular dichroism spectroscopy indicates that these changes are accompanied by minimal changes in the enzyme's secondary structure. Incubation of purified NMT with [1-14C] myristoyl-CoA, followed by chymotryptic digestion, denaturing polyacrylamide gel electrophoresis, and treatment with hydroxylamine yielded results that are highly suggestive of a covalent ester-linked acyl-enzyme complex. Edman degradation of chymotryptic peptides has narrowed the site of interaction to a domain spanning Arg42 to Thr220 of the 455 amino acid acyltransferase. An octapeptide containing Gly but not Ala at position 1 is able to reverse the change in pI and reduce the quenching almost entirely. These data suggest a preferred order or ping-pong reaction mechanism with the acyl-CoA substrate binding event occurring first. They also indicate that Gly1 is absolutely necessary for the reaction to proceed forward from the acyl-enzyme reaction intermediate.[Abstract] [Full Text] [Related] [New Search]