These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium.
    Author: Stephens LR, Irvine RF.
    Journal: Nature; 1990 Aug 09; 346(6284):580-3. PubMed ID: 2198472.
    Abstract:
    Although myo-inositol hexakisphosphate (InsP6; phytate) is the most abundant inositol phosphate in nature and probably has a wide variety of functions, neither the route of its synthesis from myo-inositol nor its metabolic relationships with other inositol-containing compounds (such as the second messenger inositol 1,4,5-trisphosphate, Ins(1,4,5)P3) are known. Here we report that the pathway by which InsP6 is synthesized in the cellular slime mould Dictyostelium, and in cell-free preparations derived from them, is catalysed by a series of soluble ATP-dependent kinases independently of the metabolism of both phosphatidylinositol and Ins(1,4,5)P3. The intermediates between myo-inositol and InsP6 are Ins3P, Ins(3,6)P2, Ins(3,4,6)P3, Ins(1,3,4,6)P4 and Ins(1,3,4,5,6)P5. The 3- and 5-phosphates of InsP6 take part in futile cycles in which Ins(1,2,4,5,6)P5 and Ins(1,2,3,4,6)P5 are rapidly formed by dephosphorylation of InsP6, only to be rephosphorylated to yield their precursor.
    [Abstract] [Full Text] [Related] [New Search]