These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Beneficial effects of PKF275-055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy.
    Author: Bianchi R, Cervellini I, Porretta-Serapiglia C, Oggioni N, Burkey B, Ghezzi P, Cavaletti G, Lauria G.
    Journal: J Pharmacol Exp Ther; 2012 Jan; 340(1):64-72. PubMed ID: 21984837.
    Abstract:
    1-[(2-adamantyl)amino]acetyl-2-cyano-(S)-pyrrolidine, monohydrochloride (PKF275-055), a vildagliptin analog, is a novel, selective, potent, orally bioavailable, and long-acting dipeptidyl peptidase IV inhibitor. We studied the effect of PKF275-055 administration on the prevention, protection, and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. PKF275-055 improved body and muscle weight. Oral glucose tolerance tests showed a marked improvement in glucose metabolism under all treatment schedules. When tested in prevention and protection experiments, PKF275-055 completely averted the decrease of Na⁺/K⁺-ATPase activity and partially counteracted the nerve conduction velocity (NCV) deficit observed in untreated diabetic rats but had no effects on abnormal mechanical and thermal sensitivity. When used in a therapeutic setting, PKF275-055 induced a significant correction in the alteration in Na⁺,K⁺-ATPase activity and NCV present in untreated diabetics. Diabetic rats developed mechanical hyperalgesia within 2 weeks after streptozotocin injection and exhibited significantly longer thermal response latencies. It is noteworthy that PKF275-055 treatment restored mechanical sensitivity thresholds by approximately 50% (p < 0.01) and progressively improved the alteration in thermal responsiveness. In conclusion, PKF275-055 showed an anabolic effect, improved oral glucose tolerance, and counteracted the alterations in Na⁺,K⁺-ATPase activity, NCV, and nociceptive thresholds in diabetic rats. The present data support a potential therapeutic effect of PKF275-055 in the treatment of rodent diabetic neuropathy.
    [Abstract] [Full Text] [Related] [New Search]