These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and transfection efficiency of cationic oligopeptide lipids: role of linker. Author: Gopal V, Xavier J, Kamal MZ, Govindarajan S, Takafuji M, Soga S, Ueno T, Ihara H, Rao NM. Journal: Bioconjug Chem; 2011 Nov 16; 22(11):2244-54. PubMed ID: 21985175. Abstract: In the design of new cationic lipids for gene transfection, the chemistry of linkers is widely investigated from the viewpoint of biodegradation and less from their contribution to the biophysical properties. We synthesized two dodecyl lipids with glutamide as the backbone and two lysines to provide the cationic headgroup. Lipid 1 differs from Lipid 2 by the presence of an amide linkage instead of an ester linkage that characterizes Lipid 2. The transfection efficiency of lipoplexes with cholesterol as colipid was found to be very high with Lipid 1 on Chinese Hamster Ovary (CHO) and HepG2 cell lines, whereas Lipid 2 has shown partial transfection efficiency on HepG2 cells. Lipid 1 was found to be stable in the presence of serum when tested in HepG2 and CHO cells albeit with lower activity. Fluorescence-based dye-binding and agarose gel-based assays indicated that Lipid 1 binds to DNA more efficiently than Lipid 2 at charge ratios of >1:1. The uptake of oligonucleotides with Lipid 1 was higher than Lipid 2 as revealed by confocal microscopy. Transmission electron microscopy (TEM) images reveal distinct formation of liposomes and lipoplexes with Lipid 1 but fragmented and unordered structures with Lipid 2. Fusion of Lipids 1 and 2 with anionic vesicles, with composition similar to plasma membrane, suggests that fusion of Lipid 2 was very rapid and unlike a fusion event, whereas the fusion kinetics of Lipid 1 vesicles was more defined. Differential scanning calorimetry (DSC) revealed a high T(m) for Lipid 1 (65.4 °C) while Lipid 2 had a T(m) of 23.5 °C. Surface area-pressure isotherms of Lipid 1 was less compressible compared to Lipid 2. However, microviscosity measured using 1,6-diphenyl-1,3,5-hexatriene (DPH) revealed identical values for vesicles made with either of the lipids. The presence of amide linker apparently resulted in stable vesicle formation, higher melting temperature, and low compressibility, while retaining the membrane fluid properties suggesting that the intermolecular hydrogen bonds of Lipid 1 yielded stable lipoplexes of high transfection efficiency.[Abstract] [Full Text] [Related] [New Search]