These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. Author: Ben Saad R, Fabre D, Mieulet D, Meynard D, Dingkuhn M, Al-Doss A, Guiderdoni E, Hassairi A. Journal: Plant Cell Environ; 2012 Mar; 35(3):626-43. PubMed ID: 21988523. Abstract: The expression of AlSAP, in rice cv. Nipponbare, enhances plant tolerance to cold, drought and salt stresses. AlSAP lines showed 100% survival rate and set seeds while control plants did not recover from the cold treatment. Under a severe drought stress treatment (fraction of transpirable soil water down to 0.1), AlSAP lines exhibited enhanced Transpiration Efficiency (TE) and maintained a high A (Assimilation rate) value (22 µmol·m(-2) s(-1) ) while these values dramatically decreased (A = 4 µmol·m(-2) s(-1) ) in control plants which were subsequently unable to recover from the stress. Of noteworthy is that AlSAP rice plants yielded a similar and a 60% seed set under control and stress conditions respectively, with regard to wild-type (WT) plants grown under control conditions. This indicates that AlSAP expression imposes no yield penalty and allows seed production even following a severe drought stress at the vegetative stage. Furthermore, AlSAP rice was shown to accumulate transcripts of a pilot set of eight stress-related genes at a significantly higher level than WT plants, both under control and stressed conditions. The results suggest that AlSAP expression generates stress tolerance in plants through maintenance of the photosynthetic apparatus integrity and by stimulating an endogenous adaptive potential which is not effectively accomplished in WT plants.[Abstract] [Full Text] [Related] [New Search]