These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Valyl-tRNA synthetase from yeast. Discrimination between 20 amino acids in aminoacylation of tRNA(Val)-C-C-A and tRNA(Val)-C-C-A(3'NH2). Author: Freist W, Cramer F. Journal: Eur J Biochem; 1990 Jul 20; 191(1):123-9. PubMed ID: 2199195. Abstract: For discrimination between valine and the 19 naturally occurring noncognate amino acids, as well as between valine and 2-amino-isobutyric acid by valyl-tRNA synthetase from baker's yeast, discrimination factors (D) have been determined from kcat and Km values in aminoacylation of tRNA(Val)-C-C-A. The lowest values were found for Trp, Ser, Cys, Lys, Met and Thr (D = 90-870), showing that valine is 90-870 times more frequently attached to tRNA(Val)-C-C-A than the noncognate amino acids at the same amino acid concentrations. The other amino acids exhibit D values between 1,100 and 6200. Generally, valyl-tRNA synthetase is considerably less specific than isoleucyl-tRNA synthetase, but this may be partly compensated in the cell by valine concentrations higher than those of noncognate acids. In aminoacylation of tRNA(Val)-C-C-A(3'NH2) discrimination factors D1 are in the range of 40-1260. From D1 values and AMP formation stoichiometry, pretransfer proof-reading factors pi 1 were determined: post-transfer proof-reading factors II 2 were determined from D values and AMP formation stoichiometry in acylation of tRNA(Val)-C-C-A. II 1 values (7-168) show that pretransfer proof-reading is the main correction step, post-transfer proof-reading (II 2 approximately 1-7) is less effective and in some cases negligible. Initial discrimination factors were calculated from discrimination and proof-reading factors according to a two-step binding process. These factors, due to different Gibbs free energies of binding can be related to hydrophobic interaction forces, and a hypothetical 'stopper' model of the amino-acid-binding site is discussed.[Abstract] [Full Text] [Related] [New Search]