These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Communication: rigorous calculation of dissociation energies (D0) of the water trimer, (H2O)3 and (D2O)3.
    Author: Wang Y, Bowman JM.
    Journal: J Chem Phys; 2011 Oct 07; 135(13):131101. PubMed ID: 21992272.
    Abstract:
    Using a recent, full-dimensional, ab initio potential energy surface [Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011)] together with rigorous diffusion Monte Carlo calculations of the zero-point energy of the water trimer, we report dissociation energies, D(0), to form one monomer plus the water dimer and three monomers. The calculations make use of essentially exact zero-point energies for the water trimer, dimer, and monomer, and benchmark values of the electronic dissociation energies, D(e), of the water trimer [J. A. Anderson, K. Crager, L. Fedoroff, and G. S. Tschumper, J. Chem. Phys. 121, 11023 (2004)]. The D(0) results are 3855 and 2726 cm(-1) for the 3H(2)O and H(2)O + (H(2)O)(2) dissociation channels, respectively, and 4206 and 2947 cm(-1) for 3D(2)O and D(2)O + (D(2)O)(2) dissociation channels, respectively. The results have estimated uncertainties of 20 and 30 cm(-1) for the monomer plus dimer and three monomer of dissociation channels, respectively.
    [Abstract] [Full Text] [Related] [New Search]