These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Region-of-interest material decomposition from truncated energy-resolved CT. Author: Schmidt TG, Pektas F. Journal: Med Phys; 2011 Oct; 38(10):5657-66. PubMed ID: 21992382. Abstract: PURPOSE: Energy-resolved CT using photon-counting detectors has the potential to provide improved material decomposition compared to dual-kVp approaches. However, available photon-counting detectors are susceptible to pulse-pileup artifacts, especially at the periphery of the field of view (FOV) where the object attenuation is low compared to the center of the FOV. Pulse pileup may be avoided by imaging a region-of-interest (ROI) where the dynamic range is expected to be limited. This work investigated performing material decomposition and reconstructing ROI basis images from truncated energy-resolved data. METHODS: A method is proposed to reconstruct images of basis functions primarily contained within the ROI, such as targeted or localized K-edge contrast agents. Material decomposition is performed independently for each ray in the sinogram, followed by filtered backprojection from the truncated data encompassing the ROI. A second method is proposed that uses a prior conventional energy-integrating image to estimate energy-resolved data outside the ROI. The measured and estimated energy-resolved data are decomposed into basis projections and merged into basis sinograms of the full FOV. Basis images of the ROI are then reconstructed through filtered backprojection. This method is most easily applied to objects that do not contain K-edge contrast agents outside the ROI. Simulations of a voxelized thorax phantom with iodine in the blood pool and a detector with five energy bins were performed. Full FOV, truncated, and truncated data merged with data estimated from the prior energy-integrating image were decomposed into Compton, photoelectric, and iodine basis functions. An empirical weighting factor was determined to blend the merged sinogram at the boundary of the truncated data. The effects of noise and misalignment in the prior image were also quantified. Basis images of the central 15 cm × 15 cm ROI containing the heart were reconstructed via filtered backprojection. Basis image accuracy was quantified relative to gold-standard basis images reconstructed from full FOV energy-resolved data. RESULTS: The error in the iodine basis image reconstructed from truncated energy-resolved data without prior information was less than 1% for the central 7 cm of the 7.5-cm-radius ROI and 3% at the edge of the ROI. When the truncated and estimated basis sinograms were blended, the error was below 1% throughout the ROI for photoelectric basis images and ranged from 1% at the center of the ROI to 4% at the edge for the Compton basis image. CONCLUSIONS: The density of localized K-edge contrast agents can be estimated to within 1% error using filtered back projection without prior information. For noncontrast and localized-contrast scans, ROI images of general basis functions can be reconstructed to within a few percent error using a prior energy-integrating image. The ability to perform material decomposition for a limited ROI may facilitate energy-resolved CT with available photon-counting detectors.[Abstract] [Full Text] [Related] [New Search]