These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel lipid-soluble thiol-redox antioxidant and heavy metal chelator, N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) and phospholipase D-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) attenuate mercury-induced lipid signaling leading to protection against cytotoxicity in aortic endothelial cells. Author: Secor JD, Kotha SR, Gurney TO, Patel RB, Kefauver NR, Gupta N, Morris AJ, Haley BE, Parinandi NL. Journal: Int J Toxicol; 2011 Dec; 30(6):619-38. PubMed ID: 21994240. Abstract: Here, we investigated thiol-redox-mediated phospholipase D (PLD) signaling as a mechanism of mercury cytotoxicity in mouse aortic endothelial cell (MAEC) in vitro model utilizing the novel lipid-soluble thiol-redox antioxidant and heavy metal chelator, N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) and the novel PLD-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI). Our results demonstrated (i) mercury in the form of mercury(II) chloride, methylmercury, and thimerosal induced PLD activation in a dose- and time-dependent manner; (ii) NBMI and FIPI completely attenuated mercury- and oxidant-induced PLD activation; (iii) mercury induced upstream phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) leading to downstream threonine phosphorylation of PLD(1) which was attenuated by NBMI; (iv) mercury caused loss of intracellular glutathione which was restored by NBMI; and (v) NBMI and FIPI attenuated mercury- and oxidant-induced cytotoxicity in MAECs. For the first time, this study demonstrated that redox-dependent and PLD-mediated bioactive lipid signaling was involved in mercury-induced vascular EC cytotoxicity which was protected by NBMI and FIPI.[Abstract] [Full Text] [Related] [New Search]