These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A growth factor delivery system for chondrogenic induction of infrapatellar fat pad-derived stem cells in fibrin hydrogels. Author: Ahearne M, Buckley CT, Kelly DJ. Journal: Biotechnol Appl Biochem; 2011; 58(5):345-52. PubMed ID: 21995537. Abstract: Articular cartilage has a limited capacity for self-renewal and repair. Tissue engineering of cartilage in vitro has been proposed as a solution to this problem; however, this approach is costly and requires a significant amount of time to grow the graft. An alternative approach is to implant chondroprogenitor cells seeded within a growth factor delivery scaffold directly into the defect site to promote tissue regeneration. The objective of this study was to develop a biocompatible growth factor delivery system capable of promoting chondrogenesis of infrapatellar fat pad (IFP)-derived stem cells. Transforming growth factor beta-1 (TGF-β1) was loaded into gelatin microspheres and incorporated into fibrin hydrogels containing IFP-derived stem cells. The release of TGF-β1 was quantified using an enzyme-linked immunosorbent assay, whereas chondrogenesis was demonstrated histologically and by quantifying sulfated glycosaminoglycan production after 21 days of in vitro culture. TGF-β1 loaded into gelatin microspheres appeared to be as effective in promoting chondrogenesis of IFP-derived stem cells as adding TGF-β1 directly to the medium. The influence of different microsphere fabrication parameters and TGF-β1 loading concentrations was also investigated but appeared to only have a small effect on subsequent chondrogenesis. The development of such growth factor delivery systems in combination with IFP-derived stem cells represents a potential new strategy for cartilage defect repair.[Abstract] [Full Text] [Related] [New Search]