These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3,3'-Diindolylmethane alters Ca2+ homeostasis and viability in MG63 human osteosarcoma cells.
    Author: Lu YC, Chen IS, Chou CT, Huang JK, Chang HT, Tsai JY, Hsu SS, Liao WC, Wang JL, Lin KL, Liu SI, Kuo CC, Ho CM, Jan CR.
    Journal: Basic Clin Pharmacol Toxicol; 2012 Apr; 110(4):314-21. PubMed ID: 21995587.
    Abstract:
    The effect of the natural product 3,3'-diindolylmethane (DIM) on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in MG63 human osteosarcoma cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)](i). DIM at concentrations of 40-80 μM induced a [Ca(2+)](i) rise in a concentration-dependent manner. The response was reduced partly by removing Ca(2+). DIM-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365 and protein kinase C modulators. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished DIM-induced [Ca(2+)](i) rise. Incubation with DIM also inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 abolished DIM-induced [Ca(2+)](i) rise. At concentrations of 10-50 μM, DIM killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Annexin V/propidium iodide staining data implicate that DIM (20 and 40 μM) induced apoptosis in a concentration-dependent manner. In sum, in MG63 cells, DIM induced a [Ca(2+)](i) rise by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via protein kinase C-sensitive store-operated Ca(2+) channels. DIM caused cell death that may involve apoptosis.
    [Abstract] [Full Text] [Related] [New Search]