These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Separation and determination of arsenic species in water by selective exchange and hybrid resins.
    Author: Ben Issa N, Rajaković-Ognjanović VN, Marinković AD, Rajaković LV.
    Journal: Anal Chim Acta; 2011 Nov 07; 706(1):191-8. PubMed ID: 21995928.
    Abstract:
    A simple and efficient method for separation and determination of inorganic arsenic (iAs) and organic arsenic (oAs) in drinking, natural and wastewater was developed. If arsenic is present in water prevailing forms are inorganic acids of As(III) and As(V). oAs can be found in traces as monomethylarsenic acid, MMA(V), and dimethylarsenic acid, DMAs(V). Three types of resins: a strong base anion exchange (SBAE) and two hybrid (HY) resins: HY-Fe and HY-AgCl, based on the activity of hydrated iron oxides and a silver chloride were investigated. It was found that the sorption processes (ion exchange, adsorption and chemisorptions) of arsenic species on SBAE (ion exchange) and HY resins depend on pH values of water. The quantitative separation of molecular and ionic forms of iAs and oAs was achieved by SBAE and pH adjustment, the molecular form of As(III) that exists in the water at pH <8.0 was not bonded with SBAE, which was convenient for direct determination of As(III) concentration in the effluent. HY-Fe resin retained all arsenic species except DMAs(V), which makes possible direct measurements of this specie in the effluent. HY-AgCl resin retained all iAs which was convenient for direct determination of oAs species concentration in the effluent. The selective bonding of arsenic species on three types of resins makes possible the development of the procedure for measuring and calculation of all arsenic species in water. In order to determine capacity of resins the preliminary investigations were performed in batch system and fixed bed flow system. Resin capacities were calculated according to breakthrough points in a fixed bed flow system which is the first step in designing of solid phase extraction (SPE) module for arsenic speciation separation and determination. Arsenic adsorption behavior in the presence of impurities showed tolerance with the respect to potential interference of anionic compounds commonly found in natural water. Proposed method was established performing standard procedures: with external standard, certified reference material and standard addition method. Two analytical techniques: the inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy-hydride generation (AAS-GH) were comparatively applied for the determination of arsenic in all arsenic species in water. ICP-MS detection limit was 0.2 μg L(-1) and relative standard deviation (RSD) of all arsenic species investigated was between 3.5 and 5.1%.
    [Abstract] [Full Text] [Related] [New Search]