These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation.
    Author: Qiu J, Ma XL, Wang X, Chen H, Huang BR.
    Journal: Mol Cell Biochem; 2012 Feb; 361(1-2):197-208. PubMed ID: 21997736.
    Abstract:
    Insulin-like growth factor binding protein-6 (IGFBP-6) is a member of the insulin-like growth factor binding protein family, which has both Insulin-like growth factor-dependent and independent effects on cell growth. In previous studies, we have shown that recombinant IGFBP-6 could be translocated into the cell nucleus. But the effect in the nucleus of IGFBP-6 is not clear. In the present study, we use multiple methodologies including Glutathione S-transferase pull-down assay, co-immunoprecipitation, fluorescence resonance energy transfer to demonstrate that IGFBP-6 can directly interact with thyroid hormone receptor alpha 1 (TRα1) in vitro and in vivo. We also demonstrate that the DNA-binding domains and Ligand-binding domains of TRα1 and N-terminal domains and C-terminal domains of IGFBP-6 are involved in the interaction. This interaction also can block the formation of TR: retinoid X receptor heterodimers. Furthermore, immunofluorescence co-localization studies show IGFBP-6 and TRα1 could co-localize in the nucleus of the cells. Reporter gene experiment shows that IGFBP-6 negatively regulates the growth hormone promoter activity induced by ligand activated TRα1. Moreover, real-time RT-PCR demonstrates that IGFBP-6 could inhibit the osteocalcin mRNA transcription induced by Triiodothyronine (3,3',5-Triiodo-L-thyronine, T3) in osteoblastic cells. Finally, alkaline phosphatase activity was significantly decreased in osteoblastic cells when the cells were transfected with IGFBP-6 in the presence of T3. In conclusion, these studies provide evidence that overexpression of IGFBP-6 suppresses osteoblastic differentiation regulated by TR in the present of T3.
    [Abstract] [Full Text] [Related] [New Search]