These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction mapping between Saccharomyces cerevisiae Smc5 and SUMO E3 ligase Mms21.
    Author: Duan X, Holmes WB, Ye H.
    Journal: Biochemistry; 2011 Nov 22; 50(46):10182-8. PubMed ID: 21999667.
    Abstract:
    The multisubunit Smc5-Smc6 holocomplex (Smc5/6) plays a critical role in chromosome stability maintenance, DNA replication, homologous recombination, and double-stranded DNA damage repair. Smc5 and Smc6 form the core of the holocomplex, along with six non-SMC elements, for which most functions are not yet understood. Mms21 (Nse2), the relatively well-studied subunit in Smc5/6, contains a SP-like-RING finger motif on the C-terminus and was identified as a SUMO E3 ligase. Deletion of Mms21 is lethal; however, while deficient in DNA damage repair, SUMO ligase mutants remain viable. These functions of Mms21 in Smc5/6 are hard to address without understanding the interaction between Smc5 and Mms21. Previously, we systematically examined the architecture of Saccharomyces cerevisiae Smc5/6 and, using yeast two-hybrid methods, found that Mms21 interacts with the coiled-coil of Smc5. Later, crystallographic studies revealed the molecular arrangement of Mms21 with Smc5/6. For this study, we use a combination of limited proteolysis, mass spectrometry, and N-terminal sequencing to precisely define the interaction region of Smc5 with Mms21. In addition, using isothermal titration calorimetry, we find that Mms21 interacts with Smc5 in a 1:1 ratio with a K(d) of 0.68 μM. This combination of methods would be useful in examining the structure of any large multiprotein complex.
    [Abstract] [Full Text] [Related] [New Search]